28/11 added to 29/8 in Fraction Form

The result of 28/11 added to 29/8 is: 6 15/88

Step-by-Step Solution

Step 1: Understand the Problem

We need to add the fractions \(\frac2811\) and \(\frac298\).

Step 2: Find the Least Common Multiple (LCM)

To add fractions, we need a common denominator. The LCM of 11 and 8 is 88.

Step 3: Convert Fractions to Equivalent Fractions

Convert \(\frac2811\) to \(\frac{224}88\)
Convert \(\frac298\) to \(\frac{319}88\)

Step 4: Add the Numerators

Add the numerators: 224 + 319 = 543

Step 5: Convert to Mixed Number

The fraction \(\frac54388\) can be written as the mixed number \(6\frac1588\).

Final Answer

The result of 28/11 added to 29/8 is:

\[ \frac{28}{11} + \frac{29}{8} = 6\frac1588 \]

Understanding Fraction Addition

How to Add Fractions

To add fractions, you need to ensure they have a common denominator. Then add the numerators:

\( \frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd} \) (when denominators are different)

Or simply \( \frac{a}{b} + \frac{c}{b} = \frac{a + c}{b} \) (when denominators are the same)

Why Simplify Fractions?

Simplifying fractions makes them easier to work with and understand. A fraction is in its simplest form when the numerator and denominator have no common factors other than 1.

To simplify a fraction, divide both the numerator and denominator by their greatest common divisor (GCD).

Fraction Calculator

Calculate operations between any two fractions: