67/128 subtracted by 12/3 in Fraction Form

The result of 67/128 subtracted by 12/3 is: -4 67/128

Step-by-Step Solution

Step 1: Understand the Problem

We need to subtract the fraction \(\frac123\) from \(\frac67128\).

Step 2: Find the Least Common Multiple (LCM)

To subtract fractions, we need a common denominator. The LCM of 128 and 3 is 384.

Step 3: Convert Fractions to Equivalent Fractions

Convert \(\frac67128\) to \(\frac{201}384\)
Convert \(\frac123\) to \(\frac{1536}384\)

Step 4: Subtract the Numerators

Subtract the numerators: 201 - 1536 = -1335

Step 5: Simplify the Fraction

We can simplify \(\frac-1335384\) to its lowest form.
The greatest common divisor (GCD) of -1335 and 384 is 3.
Dividing both numerator and denominator by the GCD, we get \(\frac-445128\).

Step 6: Convert to Mixed Number

The fraction \(\frac-445128\) can be written as the mixed number \(-4\frac67128\).

Final Answer

The result of 67/128 subtracted by 12/3 is:

\[ \frac{67}{128} - \frac{12}{3} = -4\frac67128 \]

Understanding Fraction Subtraction

How to Subtract Fractions

To subtract fractions, you need to ensure they have a common denominator. Then subtract the numerators:

\( \frac{a}{b} - \frac{c}{d} = \frac{ad - bc}{bd} \) (when denominators are different)

Or simply \( \frac{a}{b} - \frac{c}{b} = \frac{a - c}{b} \) (when denominators are the same)

Why Simplify Fractions?

Simplifying fractions makes them easier to work with and understand. A fraction is in its simplest form when the numerator and denominator have no common factors other than 1.

To simplify a fraction, divide both the numerator and denominator by their greatest common divisor (GCD).

Fraction Calculator

Calculate operations between any two fractions: